
Grange Mobile App
Social Media Applications!
!
Final Assignment!!!!!!!

MAY 2014�1VANYA MUTAFCHIEVA D13122651

!
Table of Contents!

!!!
Table of Contents! 2!

1.Introduction! 3!

2.Requirements! 3!
2.1 Concept of Operations! 3!

2.1 User Scenario! 4!

3. Design! 6!
3.1 Use Cases! 6!

3.2 Simple Data Model! 10!

3.3 Prioritised Function List! 16!

4. Implementation! 23!
4.1 Implementation of Home Page! 23!

4.2 Implementation of Lecturers, Modules and Student Pages! 23!

4.3 Structuring of Library, Social, News and Schools Pages! 24!

4.4 Implementation of Multimedia, Website and About Pages! 25!

4.5 Functionality of News and Social Pages! 25!

4.6 Implementation of the Map Page! 26!

4.7 Implementation of the Breadcrumb Navigation Menu! 28!

4.8 Implementation of the Use of Local Storage (for offline use of the app)! 29!

4.9 Implementation of the functionality of the Library Page! 29!

4.10 Implementation of appropriate folder structure! 31!

5. Testing! 32!

6. Critical Analysis! 33!

7. Conclusion! 34

MAY 2014�2VANYA MUTAFCHIEVA D13122651

1.Introduction!
This report, prepared by Vanya Mutafchieva, is part of the final assignment for the Social Media
Applications Module and aims to document the development process of the artefact part of the
assignment (the Grange Mobile App). !!
The Grange Mobile App itself is a mobile web application for a single user (student) of the fictitious
Grange Institute of Technology. It’s built using the MAMP webserver solution package (Mac OS,
Apache, MySQL, PHP) and is programmed using a combination of HTML5 and jQuery Mobile,
JavaScript, jQuery, SQL and PHP, and using JSON for exchanging information between browser
and server. !

2.Requirements!
!

2.1 Concept of Operations!

All major functionality of the app is to be accessed through the home screen where 11 tiled icons
are representative of the 11 main actions a user can take when using the app: !

1. Lecturers - access a list of current lecturers for the
semester’s modules and view contact details for each
lecturer !
2. Map - view the user’s current location on a Google map,
as well as the locations of the four schools of the institute !
3. Modules - access a list of the user’s current modules for
the semester and view detailed information for each module !
4. News - access a list of the Institute’s RSS news feed,
view each post in a separate screen and follow a link to the
original article online !
5. Students - access a list of other students in the user’s
class and view detailed information for each student !
6. Multimedia - access a thumbnail list of recent videos
released by the Institute and view each video on a separate
page !

7. Social - access a list of the institute’s 20 most recent tweets !
8. Library - access the Library screen containing opening hours information for the four libraries,

as well as a search box for library books availability, which leads to a detailed screen for in-
depth information such as number of copies available of a particular book and the user’s
current distance to each library !

MAY 2014�3VANYA MUTAFCHIEVA D13122651

9. Schools - access a list of the Institute’s four colleges, for each college this links to another list
of the college’s schools, which then links to that school’s website !

10. Website - links to the Institute’s website !
11. About - view ‘About’ information about the Institute ! !

2.1 User Scenario!

[Report Requirement No1 - user scenario for a single user]!
This user scenario demonstrates some of the more interesting user needs which the app’s
functionality addresses: !
Gonzo is a student in GIT (Grange Institute of Technology). He has some time to kill during a gap
between lectures. He decides to read the GIT news. He launches the Grange Mobile App and is
presented with the home screen. The home screen shows a tiled view of icons for different
actions. Gonzo taps on the 'News' icon and is taken to the 'News' screen, which is a list view of
GIT's RSS feed. Gonzo taps on an article about technology. This bring him to a 'Story' screen
where he is presented with a summary article and a 'Read full story in browser' button which links
to the original article online. After quickly glancing through the text Gonzo taps on the 'Read full
story in browser' button and is taken to the original article online.
(Use case 1 - View news feed/ Read individual news articles) !
While reading the article about web technology Gonzo is reminded about his Dynamic Web
Development assignment. He wants to ask his lecturer Charlie Cullen a question, he decides to
send him a quick email. He resumes the Grange Mobile App and when presented with the 'Story'
screen, which was the last open screen from his previous session, he taps the top left 'home'
button on the breadcrumb navigation menu and is taken to the home screen. Gonzo now taps on
the 'Lecturers' icon and is taken to the 'Lecturers' screen which lists all of Gonzo's lecturers for the
semester. Gonzo taps on the 'Charlie Cullen' item from the list view and is taken to a 'Lecturer'
screen with detailed contact information about Charlie. Gonzo locates the email section and taps
on it. This opens a 'New Message' email screen. The 'To:' and 'From:' fields are already pre-
populated with Charlie's and Gonzo's email addresses respectively, and so Gonzo enters a subject
title in the 'Subject' field, types his question underneath in the email body field and presses the
'Send' button.
(Use case 2 - View lecturer's contact details/ Send email) !

[Extra Credit Requirement No1 - Second Context]!
Later that day on his commute home Gonzo receives an email back from Charlie suggesting a
solution to Gonzo's issue. Charlie recommends a book for Gonzo to read for more in-depth
explanation. Gonzo now wants to check if the book is available for loan from the college library. He
opens the Grange Mobile App again and in the home screen taps on the 'Library' icon. This takes
him to the 'Library' screen where in the search box Gonzo types the title of the book 'Clean Code'
to check if it's available. As he types two hints appear underneath the search box in a drop down
menu. Gonzo chooses 'Clean Code' and is taken to the 'Title' screen displaying details about the
book. It looks like the book is available in all four libraries. Gonzo notices that the app has also
calculated for him his current distance from each library - the closest to him is at Aungier Street.
(Use case 3 - Check library books’ availability and current distance to library)

MAY 2014�4VANYA MUTAFCHIEVA D13122651

!
Gonzo now wants to check exactly where the Aungier street library is on the map as he has never
been in that building before. He taps on the top left 'home' button on the breadcrumb navigation
menu, and this brings him back to the home screen. Gonzo now taps on the 'Map' icon and this
opens the 'Map' screen. On the map Gonzo can see four markers indicating the locations of each
of the four school’s libraries, as well as his current location. Gonzo makes up his mind about which
library to go to.
(Use case 4 - View schools locations on the map/ View user's current location)

!

MAY 2014�5VANYA MUTAFCHIEVA D13122651

3. Design!
!

3.1 Use Cases!

All the pages of the app including all data from the server will be loaded at the app’s launch, with
the exception of the Map page. However, in order to demonstrate the logical sequence of actions
taken by the user and the software for each use case, in this section I will list all the queries to the
server and 3rd party data APIs as if they are triggered at the time of the action. These will be
enclosed in brackets for clarity. !

[Report Requirement No2 - at least 2 use cases for the user]!

!!!!!!!

3.1.1 Use case 1 - View news feed/ Read individual news articles
Action
No. User Software
1 launch app

2 load all pages of the app (except Google map)

3 display 'Home' screen

4 tap on the 'News' icon

5 (fetch rss data from news link and generate list
of ‘News’)

6 display 'News' screen

7 tap on the ‘Innovative State: How New
Technologies Can Transform Government’
item on the ‘News’ list

8 (generate data for the ‘Innovative State: How
New Technologies Can Transform
Government’ story screen)

9 display ‘Story' screen for the ‘Innovative State:
How New Technologies Can Transform
Government’ article

10 tap on the ‘Read full story in browser' button

11 load linked web page

MAY 2014�6VANYA MUTAFCHIEVA D13122651

!!!!

3.1.2.Use case 2 - View lecturer's contact details/ Send email
Action
No. User Software
1 resume app

2 display ‘Story' screen for the ‘Innovative State:
How New Technologies Can Transform
Government’ article

3 tap on the 'home' icon on the breadcrumb
navigation menu

4 display 'Home' screen

5 tap on the 'Lecturers' icon

6 (check if ‘Lecturers’ data is stored in local
storage and retrieve data if stored locally and if
recent)

7 (query server and fetch ‘Lecturers’ data if no
data is stored in local storage or if data is old)

8 display list of lecturers on ‘Lecturers’ screen

9 tap on the ‘Charlie Cullen' item on the
‘Lecturers’ list

10 (generate ‘Lecturer’ screen for Charlie Cullen)

11 display ‘Lecturer’ screen for Charlie Cullen

12 tap on the ‘Email’ section

13 launch the email phone app

14 email app populates the ‘To’ and ‘From’ fields
with Charlie’s and Gonzo’s email addresses

15 email app displays ‘New Message’ email
screen

16 type in a title in the ‘Subject’ field

17 type in text in the ‘Body’ field

18 press the ‘Send’ button

19 email app sends the email

MAY 2014�7VANYA MUTAFCHIEVA D13122651

!!

3.1.3 Use Case 3 - Check library books’ availability/ current distance to library

Action
No. User Software
1 launch app

2 display 'Home' screen

3 tap on the 'Library' icon

4 (check if ‘Library’ data is stored in local storage
and retrieve data if stored locally and if recent)

5 (query server and fetch ‘Library’ data if no data
is stored in local storage or if data is old)

6 retrieve locations for the colleges from the
server or the local storage (if previously
stored)

7 calculate the distance to each college from
current position

8 generate a list of book titles

9 display ‘Library’ screen

10 type ‘Clean Code’ in search box

11 display matching titles in a dropdown menu
underneath search box

12 tap on the ‘Clean Code’ item from the search
results dropdown list

13 generate the ‘Title’ screen for the ‘Clean Code’
book including availability and current distance
to each library

14 display details for the ‘Title’ screen for the
‘Clean Code’ book including availability and
current distance to each library

MAY 2014�8VANYA MUTAFCHIEVA D13122651

!

!
!

3.1.4 Use case 4 - View schools locations on map / View user's current location

Action
No. User Software
1 tap on the 'home' icon on the breadcrumb

navigation menu

2 display 'Home' screen

3 tap on the 'Map' icon

4 generate Google map

5 display Google map

6 fetch colleges location data from local storage
or the server (if data not stored in local
storage)

7 create markers for each college on the map,
add info window for each marker

8 display markers for the colleges on the map

9 calculate current location of user

10 create a marker for user’s current location on
the map, add info window to marker

11 display marker for user’s current location on
the map

MAY 2014�9VANYA MUTAFCHIEVA D13122651

3.2 Simple Data Model!

[Report Requirement No3 - a simple data model for the user]!

!!

3.2.1. Data Model for Use Case 1

Acti
on
No.

User Software Input/
Process/
Output

Data

1 launch app

2 load all pages of the app
(except Google map)

process

3 display 'Home' screen output HTML + jQuery Mobile

4 tap on the 'News' icon input

5 (fetch rss data from news link
and generate list of ‘News’)

process feed!
feed.items!
item!
item.title

6 display 'News' screen output HTML + jQuery Mobile

7 tap on the ‘Innovative
State: How New
Technologies Can
Transform
Government’ item on
the ‘News’ list

input

8 (generate data for the
‘Innovative State: How New
Technologies Can Transform
Government’ story screen)

process feed!
feed.items!
item!
item.title!
item.description!
item.link

9 display ‘Story' screen for the
‘Innovative State: How New
Technologies Can Transform
Government’ article

output HTML + jQuery Mobile

10 tap on the ‘Read full
story in browser'
button

input

11 load linked web page process item.link

MAY 2014�10VANYA MUTAFCHIEVA D13122651

3.2.2. Data Model for Use Case 2

Acti
on
No.

User Software Input/
Process/
Output

Data

1 resume app

2 display ‘Story' screen for the
‘Innovative State: How New
Technologies Can Transform
Government’ article

output HTML + jQuery Mobile

3 tap on the 'home' icon
on the breadcrumb
navigation menu

input

4 display 'Home' screen output HTML + jQuery Mobile

5 tap on the 'Lecturers'
icon

input

6 (check if ‘Lecturers’ data is
stored in local storage and
retrieve data if stored locally
and if recent)

process localStorage!
localStorageName!
JSONString!
JSONObject

7 (query server and fetch
‘Lecturers’ data if no data is
stored in local storage or if
data is old)

process data!
dataIsRecent!
currentTimestamp!
objectToStore!
localStorage!
lecturers!
lecturer!
lecturer.firstName!
lecturer.lastName

8 display list of lecturers on
‘Lecturers’ screen

output HTML + jQuery Mobile

9 tap on the ‘Charlie
Cullen' item on the
‘Lecturers’ list

input

10 (generate ‘Lecturer’ screen for
Charlie Cullen)

process lecturer!
lecturer.firstName!
lecturer.lastName!
lecturer.email!
lecturer.staffNumber!
lecturer.phoneNumber

11 display ‘Lecturer’ screen for
Charlie Cullen

output HTML + jQuery Mobile

12 tap on the ‘Email’
section

input

Acti
on
No.

MAY 2014�11VANYA MUTAFCHIEVA D13122651

!!

13 launch the email phone app process (by
another app)

n/a (data by another app)

14 email app populates the ‘To’
and ‘From’ fields with
Charlie’s and Gonzo’s email
addresses

process (by
another app)

n/a (data by another app)

15 email app displays ‘New
Message’ email screen

process (by
another app)

n/a (data by another app)

16 type in a title in the
‘Subject’ field

process (by
another app)

n/a (data by another app)

17 type in text in the
‘Body’ field

process (by
another app)

n/a (data by another app)

18 press the ‘Send’
button

process (by
another app)

n/a (data by another app)

19 email app sends the email process (by
another app)

n/a (data by another app)

User Software Input/
Process/
Output

DataActi
on
No.

MAY 2014�12VANYA MUTAFCHIEVA D13122651

!
3.2.3. Data Model for Use Case 3

Acti
on
No.

User Software Input/
Process/
Output

Data

1 launch app

2 display 'Home' screen output HTML + jQuery Mobile

3 tap on the 'Library'
icon

input

4 (check if ‘Library’ data is
stored in local storage and
retrieve data if stored locally
and if recent)

process localStorage!
localStorageName!
JSONString!
JSONObject

5 (query server and fetch
‘Library’ data if no data is
stored in local storage or if
data is old)

process data!
dataIsRecent!
currentTimestamp!
objectToStore!
localStorage!
books!
book!
book.catNo!
book.title!
book.year!
book.author

6 retrieve locations for the
colleges from the server or
the local storage (if previously
stored)

process data!
dataIsRecent!
currentTimestamp!
objectToStore!
localStorage!
collegeLatLng!
collegesLocation

7 calculate the distance to each
college from current position

process position.latitude!
position.longitude!
collegesLocation!
distanceToCollege

8 generate a list of book titles process books!
book!
book.catNo!
book.title!
book.year!
book.author

9 display ‘Library’ screen output HTML + jQuery Mobile

10 type ‘Clean Code’ in
search box

input

Acti
on
No.

MAY 2014�13VANYA MUTAFCHIEVA D13122651

!!

11 display matching titles in a
dropdown menu underneath
search box

output HTML + jQuery Mobile

12 tap on the ‘Clean
Code’ item from the
search results
dropdown list

input

13 generate details for the ‘Title’
screen for the ‘Clean Code’
book including availability and
current distance to each
library

process books!
book!
book.catNo!
book.title!
book.year!
book.author!
book.availability.KevinStr!
book.availability.AungieStr!
book.availability.BoltonStr!
book.availability.CathalBru
ghaStr!
collegesLocation!
distanceToCollege

14 display the ‘Title’ screen for
the ‘Clean Code’ book
including availability and
current distance to each
library

output HTML + jQuery Mobile

User Software Input/
Process/
Output

DataActi
on
No.

MAY 2014�14VANYA MUTAFCHIEVA D13122651

!

! !

3.2.4. Data Model for Use Case 4

Acti
on
No.

User Software Input/
Process/
Output

Data

1 tap on the 'home' icon
on the breadcrumb
navigation menu

input

2 display 'Home' screen output HTML + jQuery Mobile

3 tap on the 'Map' icon input

4 generate Google map process dublinLatLng!
myOptions!
map!
data

5 display Google map output HTML + jQuery Mobile

6 fetch colleges location data
from local storage or the
server (if data not stored in
local storage)

process data!
dataIsRecent!
currentTimestamp!
objectToStore!
localStorage!
collegeLatLng!
collegesLocation

7 create markers for each
college on the map, add info
window for each marker

process colleges!
college!
college.lat!
college.lon!
college.address!
collegeLatLng!
collegeMarker!
collegeInfoWindow

8 display markers for the
colleges on the map

output HTML + jQuery Mobile

9 calculate current location of
user

process position.latitude!
position.longitude!
MyLatLng

10 create a marker for user’s
current location on the map,
add info window to marker

process MyLatLng!
MyMarker!
myInfoWindow

11 display marker for user’s
current location on the map

output HTML + jQuery Mobile

MAY 2014�15VANYA MUTAFCHIEVA D13122651

3.3 Prioritised Function List!

[Report Requirement No4 - prioritised function list]!

!!

3.3.1. Function List for Use Case 1

Actio
n No. Software Input/

Process/
Output

Data Functions

1

2

3 display 'Home' screen output HTML + jQuery
Mobile

4 input

5 (fetch rss data from news
link and generate list of
‘News’)

process feed!
feed.items!
item!
item.title

generateNewsPage();!!
//renders the ‘News’!
page and the ‘Story’ pages!!!!!
getFeed(url) -> feed!!
getFeed(String) -> Object!!
// returns an Object
containing an array of Feed
Objects!!

Priority 6 (low)

6 display 'News' screen output HTML + jQuery
Mobile

7 input

8 (generate data for the
‘Innovative State: How
New Technologies Can
Transform Government’
story screen)

process feed!
feed.items!
item!
item.title!
item.description!
item.link

9 display ‘Story' screen for
the ‘Innovative State:
How New Technologies
Can Transform
Government’ article

output HTML + jQuery
Mobile

10 input

11 load linked web page process item.link

MAY 2014�16VANYA MUTAFCHIEVA D13122651

!
3.3.2. Function List for Use Case 2

Actio
n No. Software Input/

Process/
Output

Data Functions

6 (check if ‘Lecturers’ data
is stored in local storage
and retrieve data if stored
locally and if recent)

process localStorage!
localStorageName!
JSONString!
JSONObject

saveToLocalStorage(objectTo
Store, localStorageName)!!
saveToLocalStorage(Object,
String)!!
// stores the JSON Object in
string format in local storage!!
retrieveFromLocalStorage(loc
alStorageName) ->
JSONObject!!
retrieveFromLocalStorage(Strin
g) -> Object!!
// retrieves JSON String from
local storage and returns it as
an Object!

Priority 2 (high)

7 (query server and fetch
‘Lecturers’ data if no data
is stored in local storage
or if data is old)

process data!
dataIsRecent!
currentTimestamp!
objectToStore!
localStorage!
lecturers!
lecturer!
lecturer.firstName!
lecturer.lastName

generateLecturersPages()!!
// queries the server or local
storage for Lecturers data and
once it fetches the data calls the
renderLecturersPages function
passing the data to it!!!
renderLecturersPages(data)!!
renderLecturersPages(Object)!!
// takes the Lecturers data
Object as an argument and
renders the ‘Lecturers’ page
and all the ‘Lecturer’ pages!!

Priority 1 (high)

8 display list of lecturers on
‘Lecturers’ screen

output HTML + jQuery
Mobile

9 input

10 (generate ‘Lecturer’
screen for Charlie Cullen)

process lecturer!
lecturer.firstName!
lecturer.lastName!
lecturer.email!
lecturer.staffNumb
er!
lecturer.phoneNu
mber

11 display ‘Lecturer’ screen
for Charlie Cullen

output HTML + jQuery
Mobile

12 input

MAY 2014�17VANYA MUTAFCHIEVA D13122651

!
3.3.3. Function List for Use Case 3

Actio
n No. Software Input/

Process/
Output

Data Functions

1

2 display 'Home' screen output HTML + jQuery
Mobile

3 input

4 (check if ‘Library’ data is
stored in local storage
and retrieve data if stored
locally and if recent)

process localStorage!
localStorageName!
JSONString!
JSONObject

same as above

5 (query server and fetch
‘Library’ data if no data is
stored in local storage or
if data is old)

process data!
dataIsRecent!
currentTimestamp!
objectToStore!
localStorage!
books!
book!
book.catNo!
book.title!
book.year!
book.author

generateLibraryPages()!!
// queries the server or local
storage for Library data and
once it fetches the data calls
the renderLibraryPages
function passing the data to it!!!
renderLibraryPages(data)!!
renderLibraryPages(Object)!!
// takes the Library data Object
as an argument and renders
the ‘Library’ page and all the
‘Title’ pages!

Priority 3 (high)

6 retrieve locations for the
colleges from the server
or the local storage (if
previously stored)

process data!
dataIsRecent!
currentTimestamp!
objectToStore!
localStorage!
collegeLatLng!
collegesLocation

fetchCollegesLocations() ->
data!!
fetchCollegesLocations() ->
Object!!
// fetches Colleges coordinates
data from the server or local
storage and returns an Object
containing the data!

Priority 3 (high)

Actio
n No.

MAY 2014�18VANYA MUTAFCHIEVA D13122651

7 calculate the distance to
each college from current
position

process position.latitude!
position.longitude!
collegesLocation!
distanceToCollege

calculateDistanceToColleges
()!!
// uses geolocation to fetch
current position and calls
fetchCollegesLocations and
distance functions to calculate
the current distance to each
college!!!
distance(lat1, lon1, lat2, lon2)
-> Float!!
distance(lat1, lon1, lat2, lon2) -
> Float!!
// calculates distance in km
between two points by taking
these points lat and long
coordinates as arguments!

Priority 4 (medium)

8 generate a list of book
titles

process books!
book!
book.catNo!
book.title!
book.year!
book.author

!!!
generateLibraryPages()!!
renderLibraryPages(data)!!
same as above!!

Priority 3 (high)

9 display ‘Library’ screen output HTML + jQuery
Mobile

10 input

11 display matching titles in
a dropdown menu
underneath search box

output HTML + jQuery
Mobile

12 input

Software Input/
Process/
Output

Data FunctionsActio
n No.

MAY 2014�19VANYA MUTAFCHIEVA D13122651

13 generate details for the
‘Title’ screen for the
‘Clean Code’ book
including availability and
current distance to each
library

process books!
book!
book.catNo!
book.title!
book.year!
book.author!
book.availability.Kev
inStr!
book.availability.Aun
gieStr!
book.availability.Bolt
onStr!
book.availability.Cat
halBrughaStr!
collegesLocation!
distanceToCollege

14 display the ‘Title’ screen
for the ‘Clean Code’ book
including availability and
current distance to each
library

output HTML + jQuery
Mobile

Software Input/
Process/
Output

Data FunctionsActio
n No.

MAY 2014�20VANYA MUTAFCHIEVA D13122651

3.3.4. Function List for Use Case 4

Actio
n No. Software Input/

Process/
Output

Data Functions

1 input

2 display 'Home' screen output HTML + jQuery Mobile

3 input

4 generate Google map process dublinLatLng!
myOptions!
map!
data

$(document).on('pageinit',
'#mapPage', drawMap);!!
drawMap()!!
// draws Google map and
adds Markers for all colleges!

Priority 5 (medium)

5 display Google map output HTML + jQuery
Mobile

6 fetch colleges location
data from local storage or
the server (if data not
stored in local storage)

process data!
dataIsRecent!
currentTimestamp!
objectToStore!
localStorage!
collegeLatLng!
collegesLocation

fetchCollegesLocations() -
> data!!
fetchCollegesLocations() ->
Object!!
// fetches Colleges
coordinates data from the
server or local storage and
returns an Object containing
the data!

Priority 3 (high)

7 create markers for each
college on the map, add
info window for each
marker

process colleges!
college!
college.lat!
college.lon!
college.address!
collegeLatLng!
collegeMarker!
collegeInfoWindow

createCollegeMarker(data)!!
// draws four markers on the
map, one for each college,
as well as Info Window for
each !

Priority 5 (medium)
8 display markers for the

colleges on the map
output HTML + jQuery

Mobile

9 calculate current location
of user

process position.latitude!
position.longitude!
MyLatLng geoFindMe()!!

// uses geolocation to fetch
current position of user and
creates a Marker on the map
with info window!

Priority 5 (medium)

10 create a marker for
user’s current location on
the map, add info window
to marker

process MyLatLng!
MyMarker!
myInfoWindow

Actio
n No.

MAY 2014�21VANYA MUTAFCHIEVA D13122651

11 display marker for user’s
current location on the
map

output HTML + jQuery
Mobile

with info window!
Priority 5 (medium)

Software Input/
Process/
Output

Data FunctionsActio
n No.

MAY 2014�22VANYA MUTAFCHIEVA D13122651

4. Implementation!
[Report Requirement No5 - coding documentation] !

4.1 Implementation of Home Page!

[Artefact Requirement No3 - using jQuery Mobile to provide effective UI for the app]!
First, I built the home page using a jQuery Mobile 3-column Grid layout (see Grange_Mobile_App/
public_html/index.html, lines 111 - 135). !!

4.2 Implementation of Lecturers, Modules and Student Pages!

[Artefact Requirement No1 - at least 3 separate JSON calls]!
After that I implemented the Lecturers, Modules and Students pages, making sure to satisfy the
requirement for 3 separate JSON calls to the database. The implementation of all of these
followed a similar pattern. !
For example, the Modules screen is a jQuery Mobile page with a listview, the tag having its
own id attribute called “modulesPageList” (see Grange_Mobile_App/ public_html/ index.html,
line 205), which is populated when a JavaScript function generateModulesPages() is called (see
Grange_Mobile_App/ public_html/ javascript/ pagesGeneratingFunctions.js, lines 89 - 122) !

! !

MAY 2014�23VANYA MUTAFCHIEVA D13122651

The generateModulesPages() function works by first checking if there is data stored in the local
storage, and if there is it checks if the data is older than 1 day - if it is, it makes a JSON call to the
server and once it receives the new data saves it to the local storage for later use and calls a
function called renderModulesPages(data). However, if the data is not older than 1 day it calls
the renderModulesPages(data) function straight away (see Grange_Mobile_App/ public_html/
javascript/ pagesGeneratingFunctions.js, lines 125- 168).

!
The renderModulesPages function then loops through the ‘modules’ JSON object and appends a
clickable list item in the Modules page listview for each module (line 131). It then builds a module
details page for each module page (lines 133 - 165). !!

4.3 Structuring of Library, Social, News and Schools Pages

Throughout the project I re-used the above methods from section 4.2 to structure the Library page,
Social page, News page and the various Schools pages (Art College, Engineering College,
Business College, Science College) (see Grange_Mobile_App/ public_html/ javascript/
pagesGeneratingFunctions.js). !
In order to implement all those pages I extended the provided SQL database (see
Grange_Mobile_App/ public_html/ database/ collegeDatabase.sql). !
I also added new PHP scripts to query and return JSON formatted data for each new database
table (see Grange_Mobile_App/ public_html/ php/). ! !

MAY 2014�24VANYA MUTAFCHIEVA D13122651

4.4 Implementation of Multimedia, Website and About Pages!

[Extra Credit Requirement No2 - adding rich media handling]!
Next, I implemented all the hard-coded pages in the app - the Multimedia page, using HTML5
rich media handling (see an example at Grange_Mobile_App/ public_html/ index.html, lines 296 -
299), the Website page, and the About page. These did not require the use of any interesting
functions. !

4.5 Functionality of News and Social Pages!

[Extra Credit Requirement No3 - using AJAX and JSON calls to fetch RSS and JSON data
respectively from third-party data APIs]

After that I implemented the functionality for the News and Social pages, the first being a RSS
news feed and the second being a Twitter feed (). !
(See functions generateNewsPage() and generateSocialPage() in Grange_Mobile_App/
public_html/ javascript/ pagesGeneratingFunctions.js, lines 552 - 612; and 616 - 634). !
The generateNewsPage() function (source https://github.com/jfhovinne/jFeed/blob/master/
example.html) works by making an AJAX call to fetch RSS formatted data and then loops through
that data to build the News page first and then build each individual ‘Story’ page. !
To be able to implement this I was forced to save the formatted data locally beforehand in an xml
file (See Grange_Mobile_App/ public_html/ rss/ rss.xml) rather than accessing it directly through
the url link because (as I discovered later on) javascript code in a web page is allowed only to
make requests to the same IP address where it itself (the page plus the JavaScript) came from for
security reasons. However, if this app was not for a fictional institution but was commissioned and
deployed in reality, it would be served from the server that had the RSS on it (i.e. the Grange
server) and this issue won’t happen. !
I ran into one more issue with the implementation of the RSS feed. Originally I wanted to use the
DIT News Link from http://www.dit.ie/news/rss/index.xml but this wasn’t very well formatted and
instead I used a Harvard News Link http://news.harvard.edu/gazette/rss-feeds/ !
For the implementation of the generateSocialPage() function I re-used the example code from
lecture 10 and the lab but modified the app_tokens.php file to use my own OAuth tokens and in
the timeline_response.php file changed the ‘screen_name’ to ‘ditofficial’ so I that I could populate
the page with DIT’s official tweets. I also modified the php code slightly to accumulate the tweets
into an array (See Grange_Mobile_App/ public_html/ php/ timeline_response.php, lines 24 - 30) ! !

MAY 2014�25VANYA MUTAFCHIEVA D13122651

https://github.com/jfhovinne/jFeed/blob/master/example.html
http://news.harvard.edu/gazette/rss-feeds/

4.6 Implementation of the Map Page!

[Extra Credit Requirement No4 - adding locationing functionality] !
After a lot of trial and error I implemented the Map page as follows: !
First of all, this is the only page in the entire app that doesn’t load fully at the launch of the
application. It waits for the page to initialise itself before even starting the Google map code
(hence the on (‘pageinit’) function, See Grange_Mobile_App/ public_html/ index.html, line 67) but
then the Google map waits for 1/2 a second before triggering a resize event. This delay gives the
page enough time to render itself so that by the time the Google resizing function works, the page
is fully drawn and the map can draw itself at the correct size. !
! !
This is necessary because of the fact that the jQuery Mobile "pages" aren't proper HTML pages as
such - they are really just styled <div>s. As it turns out when these virtual pages are created, when
the app loads, they don't yet have a proper set of pixel dimensions because they aren't properly
rendered on screen yet. This means that the JavaScript code that Google maps uses to work out
how to draw itself gets confused. So, when the page really is drawn on the screen it gets refreshed
by resizing itself now that it has some real dimensions to work with. !

! !
The drawMap() function (See Grange_Mobile_App/ public_html/ javascript/ GoogleMapsScript.js,
lines 7 - 34) works by drawing a map first (source https://developers.google.com/maps/
documentation/javascript/examples/map-simple) and then calling the fetchCollegesLocations()
function (See Grange_Mobile_App/ public_html/ php/ timeline_response.php, lines 36 - 70), which
retrieves the coordinates of the four colleges from the database or from the local storage (logic is
the same as with the generateModulesPages() function from 4.2) and returns them as a JSON
object.

MAY 2014�26VANYA MUTAFCHIEVA D13122651

!

! !
Then the createCollegeMarker(data) function is called, taking as an argument that JSON object,
and generating markers for each of the four colleges on the map featuring popped-up info
windows (See Grange_Mobile_App/ public_html/ javascript/ GoogleMapsScript.js, lines 72 - 99). !

!

MAY 2014�27VANYA MUTAFCHIEVA D13122651

After that the geoFindMe() function gets called (source https://developers.google.com/maps/
documentation/javascript/examples/map-geolocation, See Grange_Mobile_App/ public_html/
javascript/ GoogleMapsScript.js, lines 101 - 141) fetches the current position and creates a marker
with a popped-up info window. Finally the resize event is triggered with half a second delay. !!

! !!
4.7 Implementation of the Breadcrumb Navigation Menu!

[Artefact Requirement No3 - using jQuery Mobile to provide effective UI for the app]!
Next, I implemented the Breadcrumb navigation menu. This was fairly straightforward. For an
example of the code: (See Grange_Mobile_App/ public_html/ javascript/
pagesGeneratingFunctions.js, lines 139 - 149)

!!! !
MAY 2014�28VANYA MUTAFCHIEVA D13122651

https://developers.google.com/maps/documentation/javascript/examples/map-geolocation

4.8 Implementation of the Use of Local Storage (for offline use of the app)!

[Artefact Requirement No4 - using HTML5 functionality]!
[Extra Credit Requirement No5 - any other extension beyond the taught material]

After that I implemented the use of local storage by creating two functions: saveToLocalStorage
and retrieveFromLocalStorage to save all the fetched JSON formatted data and re-use later in
order to be able to use the app offline, as well as to help the app perform faster by not having to
fetch data from the server so often.
(See Grange_Mobile_App/ public_html/ javascript/ useLocalStorageFunctions.js, lines 6 - 36) !

! !
The saveToLocalStorage(objectToStore, localStorageName) function takes two arguments -
objectToStore is the formatted JSON data fetched from the server, while localStorageName will
be the name of the new object to be stored in the localStorage object. Before saving the data it
first checks if HTML5 storage is available in the browser and if it is, it stringifies the objectToStore
because the only format we could keep it in local storage as, is a String. !
The retrieveFromLocalStorage(localStorageName) function first checks if anything is stored in
localStorage, and if it is, parses the JSON string and converts it to a JavaScript object, and finally
returns the object. !!

4.9 Implementation of the functionality of the Library Page!

!
Finally I implemented the Library page functionality, which uses the jQuery Mobile filter reveal
feature. This feature makes is easy to build a simple autocomplete using local data. When the
filterable list has the data-filter-reveal="true" attribute, it auto-hides all the list items when the
search field is blank.

MAY 2014�29VANYA MUTAFCHIEVA D13122651

!!!!!!!!!!!!!!!!
[Artefact Requirement No2 - using jQuery to handle and display results of JSON calls]!
But the more interesting part of this was implementing the calculation for the user’s current
distance to each library and displaying it on the page. I implemented this by having the
renderLibraryPages(data) function (See Grange_Mobile_App/ public_html/ javascript/
pagesGeneratingFunctions.js, lines 295 - 356) first retrieve the colleges locations by calling the
fetchCollegesLocations() function (see section 4.6) and then while looping the books fetched
data, calculating the distance to each college from the current position by calling the
calculateDistanceToColleges() function (See Grange_Mobile_App/ public_html/ javascript/
GoogleMapsScript.js, lines 144 - 177), which uses the distance function to calculate the distance
between two points (source http://www.geodatasource.com/developers/javascript, (See
Grange_Mobile_App/ public_html/ javascript/ GoogleMapsScript.js, lines 180 - 197)) !

! !

MAY 2014�30VANYA MUTAFCHIEVA D13122651

http://www.geodatasource.com/developers/javascript

! !!
4.10 Implementation of appropriate folder structure!

[Artefact Requirement No5 - appropriate folder structure for all assets and code]
Appropriate folder structure is demonstrated in the image below: !!

MAY 2014�31VANYA MUTAFCHIEVA D13122651

5. Testing!
!

!
!

No Page Functionality Test
successful

1 Home page displays correctly, all links work yes

2 Lecturers page data displays correctly, navigation and all links work yes

3 Lecturer pages data displays correctly, navigation and all links work yes

4 Map page map displays correctly and markers are positioned in
the correct locations, detects current position correctly,
loads quickly

yes

5 Modules page data displays correctly, navigation and all links work yes

6 News page data displays correctly, navigation and all links work yes

7 Story page data displays correctly, navigation and all links work yes

8 Students page data displays correctly, navigation and all links work yes

9 Student pages data displays correctly, navigation and all links work yes

10 Multimedia page data displays correctly, navigation and all links work yes

11 Video pages page displays correctly, video plays correctly,
navigation and all link work

yes

12 Social page displays full text of DIT tweets correctly yes

13 Library page reveal filter functionality performs correctly yes

14 Title pages data displays correctly, navigation and all links work,
distance is calculated correctly

yes

15 Schools page data displays correctly, navigation and all links work yes

16 Colleges pages data displays correctly, navigation and all links work yes

17 Website link link to website works yes

18 About page displays correctly yes

19 Breadcrumb Navigation functions correctly (firefox has a small issue with
images)

yes

20 Local Storage stores and retrieves data successfully yes

MAY 2014�32VANYA MUTAFCHIEVA D13122651

6. Critical Analysis!
!!
No Page/ Functionality Worked Didn’t Work

1 Home page Easy, learned about
implementing Grid Layout with
images in jQuery Mobile

2 Lecturers pages No issues

3 Map page This was one of the more
challenging pages to implement.
As I have explained above there
were issues with the map not
displaying properly. In the end I
managed to solve the issue and I
am happy with the result.

My idea in the beginning was that
this page would have more
functionality, for example I wanted
the info window for the markers to
display more information about the
schools and include a photo and a
web link. Also I wanted to link the
map with the Library page. However,
I didn’t have time to do this.

4 Modules pages No issues

5 News pages I am happy with my
implementation for the News
page. I learned a lot while trying
to solve the source issue (as
explained in detail in the
implementation section)

As explained in the implementation
section, I wanted to use DIT’s news
feed but because it included photos
and it wasn’t well structured I had to
use news feed from somewhere
else.!
Another problem I ran into was the
fact that I couldn’t fetch the RSS
data directly from the URL and
resolved to saving an xml file locally.

6 Students pages I had some choppiness while
scrolling up and down, which
took a while to debug. It was due
to orphaned <div> tags. Very
happy with solving this one!

7 Multimedia page Overall happy with the
implementation.

Ended up hardcoding all the video
pages, maybe could have come up
with a more elegant solution. Also
didn’t have time in the end to
download the respective DIT video
from YouTube, so used the same
copy of the video from lectures for all
videos. Didn’t also have time to
investigate for more HTML5 specific
controls.

8 Social page Very happy with managing to
fetch the DIT tweets and also
fitting the whole text in each box.
This page took quite a while to
research, debug etc.

MAY 2014�33VANYA MUTAFCHIEVA D13122651

!
7. Conclusion!

!
I am happy with my work for this assignment. Overall I managed to implement almost everything I
set out to do, while learning a lot along the way. I believe this experience will be very beneficial
later on for the implementation of the major project.

9 Library page This was very challenging, as it is
packed with a lot of functionality.
The main issue was the
fetchCollegeLocations function -
because is used both by the map
and the library pages, it was
difficult to coordinate between
the two. I am very happy with
how this worked out in the end.

I wanted to dynamically display the
opening hours and have a function
which tell the user if a given library is
closed or open at the moment but
had no time to implement it.

10 Schools page No issues

11 Website link No issues

12 About page No issues

13 Breadcrumb Navigation Works well in Chrome and Safari.
Happy with how it turned out!

Firefox displays the icon too big, had
no time to fix this.

14 Local Storage Very proud with coming up with
this functionality - I wanted to
demonstrate the use of HTML5
specific features. Some head
wrecking if-else statements as
well here, which took a lot of time
to get right.

15 Phone Gap Wanted to package my app in
PhoneGap but didn’t leave enough
time and when I finally did it turns out
it’s not as straightforward as just
dragging your html/javascript etc. It
seemed like it needed a lot of
debugging. Lesson learned for the
future!

16 Factoring out the
JavaScript and CSS

It worked in the end but I left it to
the end - big mistake as it took
so much longer than if I had been
doing it all along. Another lesson
learned here!

No Page/ Functionality Worked Didn’t Work

MAY 2014�34VANYA MUTAFCHIEVA D13122651

